All notes
Regressi

Linear Regression

PaulBourke.

Solution

For a function $y(x) = a + b x$, define: $s_{xx} = \sum_{i=0}^{N-1} (x_i - \bar x)^2$, $s_{yy} = \sum_{i=0}^{N-1} (y_i - \bar y)^2$, $s_{xy} = \sum_{i=0}^{N-1} (x_i - \bar x)(y_i - \bar y)$, then
$$ b = \frac{s_{xy}}{s_{xx}}$$ $$ a = \bar y - b \bar x $$ Regression coefficient: $$ r = \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$

Curve fitting with polynomials

Problem: find a polynomial $f(x)$ that passes through the N points $(x_0,y_0), (x_1,y_1), (x_2,y_2), ..... (x_{N-1}, y_{N-1})$.
General solution: $$ f(x) = \sum_{i=0}^{N-1} y_i \Pi_{j=0, j\neq i}^{N-1} \frac{x-x_j}{x_i-x_j} $$

Example:

x1 y1
x2 y2
x3 y3
x4 y4
The following is a general method of making a function that passes through any pair of values (xi,yi).
        y1 (x-x2) (x-x3) (x-x4)
f(x) = --------------------------- 
         (x1-x2) (x1-x3) (x1-x4)

        y2 (x-x1) (x-x3) (x-x4)
     + --------------------------- 
         (x2-x1) (x2-x3) (x2-x4)

        y3 (x-x1) (x-x2) (x-x4)
     + --------------------------- 
         (x3-x1) (x3-x2) (x3-x4)

        y4 (x-x1) (x-x2) (x-x3)
     + --------------------------- 
         (x4-x1) (x4-x2) (x4-x3)
etc etc. As you can see, at x=x1 all the terms disappear except the first which equals y1, at x=x2 all the terms disappear except the second which equals y2, etc etc.